Increased Power in Sediment Microbial Fuel Cell: Facilitated Mass Transfer via a Water-Layer Anode Embedded in Sediment
نویسندگان
چکیده
We report a methodology for enhancing the mass transfer at the anode electrode of sediment microbial fuel cells (SMFCs), by employing a fabric baffle to create a separate water-layer for installing the anode electrode in sediment. The maximum power in an SMFC with the anode installed in the separate water-layer (SMFC-wFB) was improved by factor of 6.6 compared to an SMFC having the anode embedded in the sediment (SMFC-woFB). The maximum current density in the SMFC-wFB was also 3.9 times higher (220.46 mA/m2) than for the SMFC-woFB. We found that the increased performance in the SMFC-wFB was due to the improved mass transfer rate of organic matter obtained by employing the water-layer during anode installation in the sediment layer. Acetate injection tests revealed that the SMFC-wFB could be applied to natural water bodies in which there is frequent organic contamination, based on the acetate flux from the cathode to the anode.
منابع مشابه
Effect of Electrolyte Conductivity and Aeration on Performance of Sediment Microbial Fuel Cell
Sediment microbial fuel cells (SMFCs) are a promising technology for a viable source of energy. This technology is faced with many challenges, such as limited mass transfer and low electricity generation. The aim of this research was to investigate the effect of electrolyte conductivity and aeration effect on power generation from SMFCs. Electrical conductivity was adjusted at 6different levels...
متن کاملIncreased power production from a sediment microbial fuel cell with a rotating cathode.
The application of a rotating cathode in a river sediment microbial fuel cell increased the oxygen availability to the cathode, and therefore improved the cathode reaction rate, resulting in a higher power production (49 mW/m(2)) compared to a nonrotating cathode system (29 mW/m(2)). The increased dissolved oxygen in the water of our lab-scale sediment MFC, however, resulted in a less negative ...
متن کاملComparison in performance of sediment microbial fuel cells according to depth of embedded anode.
Five rigid graphite plates were embedded in evenly divided sections of sediment, ranging from 2 cm (A1) to 10 cm (A5) below the top sediment layer. The maximum power and current of the MFCs increased in depth order; however, despite the increase in the internal resistance, the power and current density of the A5 MFC were 2.2 and 3.5 times higher, respectively, than those of the A1 MFC. In addit...
متن کاملRemoval and Changes of Sediment Organic Matter and Electricity Generation by Sediment Microbial Fuel Cells and Amorphous Ferric Hydroxide
Sediments play an important role in determining the quality of lakes, rivers and oceans as they can act as either a source or sink for pollutants. Once the input pollution is controlled, sediments as a secondary source of pollution can release the accumulated pollutants to overlying water.1 The organic matter content of sediments can also affect the structure of macroinvertebrate assemblages.2 ...
متن کاملHarvesting energy from the marine sediment--water interface.
Pairs of platinum mesh or graphite fiber-based electrodes, one embedded in marine sediment (anode), the other in proximal seawater (cathode), have been used to harvest low-level power from natural, microbe established, voltage gradients at marine sediment-seawater interfaces in laboratory aquaria. The sustained power harvested thus far has been on the order of 0.01 W/m2 of electrode geometric a...
متن کامل